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Summary. Interval Assignment (IA) is the problem of assigning an integer number
of mesh edges, intervals, to each curve so that the assigned value is close to the goal
value, and all containing surfaces and volumes may be meshed independently and
compatibly. Sum-even constraints are modeled by an integer variable with no goal.
My new method NLIA solves IA more quickly than the prior lexicographic min-max
approach. A problem with one thousand faces and ten thousand curves can be solved
in one second. I still achieve good compromises when the assigned intervals must
deviate a large amount from their goals. The constraints are the same as in prior
approaches, but I define a new objective function, the sum of cubes of the weighted
deviations from the goals. I solve the relaxed (non-integer) problem with this cubic
objective. I adaptively bend the objective into a piecewise linear function, which has
a nearby mostly-integer optimum. I randomize and rescale weights. For variables
stuck at non-integer values, I tilt their objective. As a last resort, I introduce wave-
like nonlinear constraints to force integrality. In short, I relax, bend, tilt, and wave.

1 Introduction

1.1 Problem Definition

Interval Assignment (IA) for quad and hex meshing is the problem of assign-
ing to each curve the number of mesh edges (intervals) it should be subdivided
into, so that every containing surface and volume can be meshed according
to its scheme. Different meshing algorithms have different requirements. For
example, map-meshing a rectangular surface with quadrilaterals requires that
curves on opposite sides contain exactly the same number of edges. Interval
assignment is important for automation and meshing independence, and also
for mesh quality. Given a global IA solution, each surface and volume con-
taining a curve can be meshed independently. (This ignores the geometric
spacing of the edges. Issues like skew control may be addressed using interval
assignment over virtual geometry [12].) IA for triangular and tet meshes is
trivial because each curve may be assigned intervals independently.



2 Scott A. Mitchell

IA in some form is required for all quad and hex meshing. The prob-
lem is surprisingly difficult. The requirements are easily described locally, but
surfaces sharing common curves create dependencies that make IA a global
problem. A good algorithm is important. A greedy strategy of assigning in-
tervals for one surface, then for another surface, can fail by “painting yourself
into a corner.” Solving the global problem using standard optimization tech-
niques is difficult because IA requires an integer number of intervals. That is,
mesh nodes are discrete quantities dividing curves into a discrete number of
mesh edges. Half of an edge makes no sense.

Optimization and Linear Constraints

General global integer optimization is a difficult and slow problem, and any
effective IA algorithm must exploit the problem structure. A key feature of
all the constraints is that they can be described using a linear equation; that
is, if xi is the number of intervals assigned to the ith curve (or virtual curve,
etc.), then the equation describing the constraint only contains xi raised to the
first power, with no x2i terms, etc. Linear constraints are the simplest in opti-
mization. We write Ax = b; equality and inequality constraints are equivalent
using standard conversions, such as slack variables, or requiring both Ax ≥ b
and Ax ≤ b. Every variable has upper and lower bounds, perhaps infinite.
Interval variables must be integer and positive, in the natural numbers N.
Integer variables are identified by an indicator set I. There may be additional
variables, perhaps for computing intermediate quantities not apparent in the
model; for conciseness we also denote these by x. An important example of
this is for unstructured quad meshing schemes, such as paving, where the sum
of intervals around any set of bounding curves must be even. We constrain
2xj =

∑
b∈bdy xb, and require xj to be an integer. Any assignment satisfying

these constraints is feasible. Removing the requirements for integrality defines
the relaxed problem. A feasible solution to it is a useful step towards an integer
solution.

We have an idea of the number of intervals we would like for each curve,
the goals. These may come from a sizing function: e.g. edges about length 4,
so a curve of length 10 has a goal of 2.5 intervals. Or the user may specify
the number directly, such as “at least ten edges through the thickness for
accuracy in weld simulations.” We assume goals are constant throughout IA.
There may be no feasible solution satisfying all the goals. We measure the
deviation of the achieved interval xi from its goal gi. We have some objective
function f(x, g) of the deviations, where f(x) = 0 if all the deviations are
zero, and f(x) > 0 otherwise. IA in standard form is

min f(x)

s.t. Ax = b

xI ∈ N
l ≤ x ≤ u.

(1)
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The best choice of optimization algorithm depends on the objective. The
easiest case of f(x) is a linear function, which leads to Linear Programs LP.
The next step up is Quadratic Programs QP with a quadratic objective. The
most general is a Non-Linear Program NLP. A nice case is when the objectives
and constraints are all convex, because local optimization is efficient and leads
to a global optimum. The relaxed IA problem is convex, but general integer
problems are not.

One way to search for integer (or other non-convex) solutions is branch and
bound: if xi = 4.5 branch and create two subproblems, one with constraint
xi ≥ 5 and one with xi ≤ 4. Solve these recursively, terminating early if the
objective value is worse than that of some previously found integer solution.
Each branching doubles the problem, leading to exponential complexity. Outer
approximations [6] can improve the efficiency of searching for integer solutions
within branch and bound, but the complexity is still exponential.

Here I have the additional freedom to change the objective function. I
take care to finesse most of the integer constraints using a convex objective,
and keep the problem convex as long as possible. Non-convex constraints
are introduced at the very end as a last resort. My test examples use linear
memory and have sub-quadratic run-time.

1.2 Interval Assignment Background

Interval assignment was first described as an optimization problem by Tam
and Armstrong in 1993 [23]. A key contribution is expressing the constraints
as linear programming constraints. The objective function is linear, the
weighted sum of deviations. The weights are inversely proportional to the
goals. Achieved intervals are bounded below by the goals, and unbounded
above. The main advantage of this formulation is that the solution is natu-
rally integer, provided the weights are unique and the goals are integer and the
model does not have certain global structure such as Figure 2. By “naturally
integer,” I mean that an optimal solution occurs at integer values, and simplex
solvers will find it without explicitly constraining the solution to integers.

The one potential disadvantage of Tam and Armstrong’s [23] objective
function is that if large deviations are required, all the deviation could be con-
centrated on one curve rather than spread out amongst several curves. This
is because the objective is linear in the deviations. The conventional wisdom
is that L1 minimization leads to sparsity in the solution [7, 10]. Whether this
actually occurs depends on the specifics of the geometry and constraints; Cecil
Armstrong said he does not observe drastic deviations. Möhring et al. [18] for-
mulated interval assignment as a network flow problem in 1997. Equality con-
straints are modeled as mass-preserving flows. Matthias Müller-Hannemann
said he did not observe drastic deviations for automobile sheet metal models.

“High Fidelity Interval Assignment” (LexIA) [17] sought to distribute the
potential concentration using a lexicographic min-max weighted deviation ob-
jective: minimize the maximum weighted deviation; then minimize the second



4 Scott A. Mitchell

largest deviation subject to not increasing the first; etc. It was solved by a
succession of min-max linear programs. In each the worst interval-variable
is rounded to a nearby integer value, made constant, and removed from the
problem. (Often several variables are fixed at once.) The sum-even constraints
were solved in a second pass, using standard branch and bound in a local
neighborhood, which may take exponential time. If it took too long to find
a feasible solution, the neighborhood was widened and the search restarted.
The disadvantage of LexIA is that getting integer values is difficult and time
consuming; there are complications arising from identifying the worst interval-
variable, and determining if fixing it makes the remaining problem infeasible.
The run-time grows at least quadratically in the number of variables.

Tam and Armstrong [23] was 1993, LexIA was in the IMR in 1997 [16],
and Möhring et al. [18] also appeared in 1997.

In the roughly 15 years since these three variations, the finite element
meshing community did not changed the problem structure very much. But,
for new meshing schemes, it was quite common to describe its interval require-
ments using linear constraints. New constraints were developed for midpoint
subdivision [13] sweep volumes [21, 22] and submapping [20]. IA was used as a
component of automatic schemes selection; infeasible IA meant the mapping
corners [15] or schemes were globally incompatible with one another [26].

LexIA was implemented in CUBIT in 1996–1997, and is still run for every
CUBIT quad mesh today. The solver library (lp solve [1]) and problem setup
has remained largely unchanged.

At the 2011 IMR in Paris, Timothy Tautges and I discussed making a
modern, open, and freely available version of IA for MeshKit [11]. I first con-
sidered defining the same objective as LexIA, but solving it using modern
techniques. There has been a lot of progress on the general problem of multi-
objective optimization [14], but less progress on lex min-max. The typical
approach remains to solve a series of optimization problems, i.e. basically
what I implemented in LexIA in 1997. What is new is that lex min-max may
be reformulated as a single, giant optimization problem. This is sometimes
simpler, but solving lex min-max remains expensive [19].

1.3 My Contribution

Instead I reformulated the objective into a nonlinear function of the devi-
ations; see Figure 1. While the constraints are standard and necessary, the
objective is a matter of mesh quality and is flexible.

I have four solution phases: relax, bend, tilt, and wave. In the relaxed
phase the objective is the sum of cubes of the weighted deviations. This is
solved using nonlinear optimization, yielding a (likely) non-integer solution.
The next three phases seek a nearby integer solution. The bends replace the
smooth nonlinear objective with a piecewise linear one; see Figure 1. I linearize
the objective in a neighborhood of the non-integer solution. If the solution to
the new problem goes beyond the neighborhood, I flatten farther and resolve.
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Fig. 1: Left, the nonlinear objective function f(x, g) for each interval variable
x with constant goal g. A potential relaxed solution x(r) is shown as a red
“x.” Center, the fully linearized objective function through the integer points.
Right, a tilted objective: a negative tilt at 2, and positive tilts at 7 and 8. The
slope is about doubled at the tilt point and beyond. These plots are notional;
the actual slopes are more extreme.

The tilts increase the slope of the linear objective function locally, while main-
taining overall convexity, so that a non-integer variable is encouraged towards
a nearby integer value; see Figure 1. The waves constrain any stubbornly
non-integer variables by a nonlinear function. The only feasible points are the
integers; see Figure 2.

NLIA revisits the prior phases adaptively. The algorithm bends until no
more bends are needed, then bends and tilts until the tilts succeed or are
stuck. As a last resort waves are added and the algorithm bends, tilts, and
waves until no more waves are needed. Bends, tilts, and waves are done for
each variable that needs it simultaneously, aiding runtime.

The piecewise linear problems tend to have a natural optimum at integer
values, just as Tam and Armstrong’s. I take advantage of the feature that
L1 minimization leads to sparsity in the solution to get integer values, turn-
ing this potential drawback into an advantage. Spreading out the deviation is
achieved by making the objective piecewise over short intervals, with increas-
ing slope away from the goal. What can go wrong? There may be optima at
non-integer values if the weights are non-unique, or the constraints conspire
as in the radish (Figure 2) or as in sum-even constraints. Since I use an inte-
rior point method, when weights are equal (degenerate) it does not gravitate
to the integer corners, unlike the simplex method. Re-weighting the objective
coefficients with bends, tilts, scalings, and randomizations tends to migrate
variables to integer values, but I have no provable guarantees. The waves en-
sure the only feasible solutions are integer, but since it changes the constraints
from convex to non-convex, the optimization problem becomes global, with
no convergence guarantees.

The status is that we have an initial NLIA implementation in MeshKit [11].
It is very fast. It has been tested on large and difficult problems, albeit artificial
ones. Not all types of scheme constraints have been implemented yet, e.g.
midpoint subdivision. Bending and tilting for sum-even variables has not yet
been implemented as of July 2013; just waves. Fixed-interval (a.k.a. hard-set,
constant) curves have not been implemented.
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Fig. 2: Left, wave integer constraints. Center & right, the global structure can
conspire to produce an effective coefficient larger than one: x3 = x1+x2 = 2x1.
The bend strategy can get stuck with x3 integer (e.g. 5) and x1 = x2 half-
integer (e.g. 2.5). Tilting to increase the objective weight of x1 and x2 may
overcome this, or a wave-constraint can force x1, x2 to an integer value.

Graphics Quad Meshing with Mixed-integer Optimization

Quadrilateral meshing has recently become popular in the Graphics commu-
nity [3]. Graphic’s objectives and types of surfaces are slightly different, but
the opposite-sides-equal constraints are universal for structured quad patches.
The models are typically smooth closed surfaces, divided into structured
patches. David Bommes has a series of papers, and a Best Thesis Award at
Eurographics 2013, exploring quad-meshing using mixed-integer optimization
problems with linear constraints and a quadratic objective, MIQP.

Bommes et al. [4] creates quadrilateral meshes of surfaces for graphics
modeling using two MIQPs. The meshes are based on the semi-structured
patches that result from defining quad-dual curves: a.k.a. loops in Spatial
Twist Continuum terminology. This has some similarities to midpoint subdi-
vision and fluid flow templates, except that the templates are not fixed, but
are the solution to a MIQP. The first MIQP fixes the number and position of
irregular vertices, the corners of the patches. Let us call this the corner-phase.
The second MIQP sets the structure of the patches, connects the dual loops,
and assign intervals. Let us call this the patch-phase.

The input is the graphics triangulation of a surface model. Sharp angles
define curves; these often do not form primal loops, and the location and struc-
ture of additional curves to close them is part of the solution. The goals are
good quad angles; orientation of the loops with respect to curvature and sharp
features, the cross field; and especially the number and placement of irregular
mesh vertices, i.e. those with edge valence different than four, singularities in
the cross-fields; plus any other user-specified or modeling or animation objec-
tives. The loops (templates) are not fixed a-priori, instead they follow from
the irregular vertices. The patch-phase problem is always feasible, and succes-
sively rounding non-integer variables to integer values and resolving always
leads to an integer solution, because it comes from the solution to the corner-
phase. Branch and bound, and other standard integerization techniques that
do not exploit the problem structure, have proven to be too slow in the Graph-
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ics meshing context. In meshing terminology, these two phases solve surface
scheme selection and interval assignment.

Moreover, the linear constraint matrix lends itself to dependent variable
elimination, i.e. Gaussian elimination. We can identify the effectively non-one
coefficients, and order the elimination to avoid getting stuck at a non-integer.
E.g. in Figure 2, x3 is eliminated first, then x2, and their integralities are
ensured by the remaining variable x1.

Bommes’s system is both robust and efficient [5]. Part of the efficiency
is because the solver is not black box, and in successive rounding the prior
solution can be quickly updated for the remaining problem. In earlier ver-
sions, some feasible solutions to the MIQP do not correspond to a quad mesh,
especially when searching for coarse meshes. Degeneracies in the map were
possible, e.g. mapping all space to a single point, or a triangle to a line, etc.
Bommes’s latest work overcomes these kinds of problems [2].

2 NLIA Algorithm Details

2.1 Subdivide into Independent Subproblems

I divide the global problem into independent subproblems having no variables
or constraints in common. For example, when submapping a volume, there are
three independent subproblems, one for each loop direction. Since the running
time of optimization solvers is nonlinear, this speeds up the overall problem.

I define a dependency graph over the global problem: each variable points
to all of the constraints it is in, and each constraint points to every variable
it contains. To build a subproblem I do a depth-first graph search, recursively
alternating over constraints and variables.

2.2 MeshKit Architecture

Goals and interval solutions are attributes attached to geometry entities. Mesh
sizes are converted to scalar goals. Constraints are specified in the scheme im-
plementations. Constraints and attributes are passed from MeshKit to NLIA
through its API. Intervals are passed back by assigning them to attributes.

2.3 IPOPT Optimization Solver

I use the optimization library IPOPT [24, 25], which handles general nonlinear
objectives and constraints. It requires a linear algebra library; I use MA27 [8].

IPOPT software is C++ with a well defined API. Unlike using an opti-
mization language such as AMPL [9], coupling a code to IPOPT requires
some API programming and callback functions. The developer must program
not only function values, but also gradients and Hessians for particular La-
grange multipliers. IPOPT requires that the size and structure of the problem
remain constant throughout the process. A library that could dynamically add
variables (bends) or change the objective (tilts) might be more efficient.
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Algorithm 1 Simple and Fast Interval Assignment

procedure Nonlinear Interval Assignment NLIA(x,g,c,e)
subdivide into independent subproblems
for all subproblems do

solve Relaxed Problem(x(r), g, c)
solve Integer Problem(x(e), x(r), g, c, e), finding x(i) then x(e)

return x(e)

end for
end procedure

procedure Relaxed Problem(x,g,c)
define NLP linear constraints c, from mapping, submapping, paving, etc.
define NLP objective, the sum of cubes of weighted deviations, f(x, g)
solve the NLP min f s.t. constraints, using IPOPT
return relaxed solution x(r)

end procedure

procedure Integer Problem(x(new),x,g,c,e)
bend: decompose x into deltas, near x = x(r)

repeat
repeat

repeat
x(old) = x
scale and randomize delta weights
define the piecewise linear objective, a weighted sum of deltas
solve NLP using IPOPT, initialized at x(old), returning x
return failure for infeasible or infinite loops or . . .
// bend
for all δ > 1 do

add more deltas: enough that x decomposes into δ ≤ 1
end for

until all δ ≤ 1
// x = x(i) integer, except perhaps for sum-even and Figure 2
// tilt
for all non-integer 0 < δ < 1 do

tilt the objective weight for δ by about 2×
apply the tilt to all farther δ to maintain convexity

end for
until all δ ∈ {0, 1} or give up
// x(i) = x(new) is integer, unless we gave up
once: add sum-even variables with g and δ
otherwise: add integer wave constraints for any xI 6∈ N

until no variables or wave constraints or deltas or tilts were added
// x(e) = x is integer, and sum-even constraints are satisfied
return solution x(new) = x

end procedure
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2.4 Constraint Equations

My constraint equations are standard for IA. IPOPT treats constraints much
like objectives. The left hand side of a constraint is evaluated as a function,
and then internally compared against feasibility bounds, to help determine
the next optimization step. I write the ith equality constraint bi = aix as a
function ci(x) = aix, and set constant upper ui and lower li bounds to bi. In-
equality is expressed by differing upper and lower bounds. For example, some
paving-like algorithms require that there are at least four intervals around
every loop; for these I enforce a lower bound of two for all sum-even variables,
even in the relaxed phase.

IPOPT needs the derivative and Hessian of the constraint functions. This
is easy because they are linear with no cross terms: c′i(x) = ai and c′′i (x) = 0.

2.5 Interval Goals and Cubic Objective

I measure the relative difference between a goal g and achieved intervals x:

F (x > g) =
x− g
g

=
x

g
− 1, and F (x < g) =

|x− g|
x

=
g

x
− 1.

I denote the relaxed objective function by f(x). It is the cube of the individ-
ual F , i.e. f(x) = F 3(x). IPOPT requires derivative and Hessian information.

f ′ = 3F 2F ′, where

F ′(x > g) =
1

g
, and F ′(x < g) =

−g
x2
.

f ′′ = 6F (F ′)
2

+ 3F 2F ′′, where

F ′′(x > g) = 0, and F ′′(x < g) =
2g

x3
.

Since the objective function is separable, there are no cross terms in the
gradient and Hessian. In the Hessian only the diagonal is non-zero. F (x = g) =
0 is continuous, giving f ′(x = g) = 0 and f ′′(x = g) = 0, also continuous.

Discussion

F (x > g) is the same as used in “High Fidelity Interval Assignment.” My
F (x < g) is different because it is a nonlinear function of x. It more accurately
captures the ratio of the achieved edge length to the desired edge length.

I chose f = F 3 rather than some other power purely experimentally, as
a way to come close to the lexicographic min-max solution. A quadratic will
concentrate the deviations more than my cubic, but if one wanted to use a
quadratic program solver rather than a general nonlinear solver, then f = F 2

might be adequate. Other forms of f might also work, and be simpler to

differentiate: e.g. f(x > g) =
(

x
g

)3
− 1, and f(x < g) =

(
g
x

)3 − 1.
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3 Relaxed Problem and Solution

IPOPT finds the relaxed solution x(r). IPOPT starts the optimization process
from an input point. For the relaxed problem, I start with all variables equal
to the goals, x = g, which is probably not feasible. For the other problems, I
start with all variables equal to the prior problem’s solution, which is feasible.

4 Integer Problem and Solution

For pseudocode see Algorithm 1. Recall the main ideas are to bend and lin-
earize the cubic objective function at integer points, tilt the objective for
optimality at integers, and add non-convex wave constraints as a last resort.
A guiding principle for efficiency is to only adapt where it is needed.

4.1 Bend to Linearizing the Objective

The objective function evaluated at integer values, f(x ∈ N), defines discrete
points. I replace f with a piecewise linear function, interpolation between
these points and extrapolation; see Figure 1. It is possible to do this in IPOPT
without defining any additional variables, hiding the bends inside black-box
call-back functions. However, IPOPT performs poorly with this approach.

Instead I decompose x into the signed sum of delta variables. There is one
delta for each piece of the piecewise linear objective. To avoid adding too many
variables that are never used, I add delta variables as the solution migrates; see
Figure 3 and 4. I start with one delta δp1 spanning the interval containing x(r),
one delta δm1 below it and one delta δp2 above it. The objective is piecewise
linear over the x intervals (1, bx(r)c), (bx(r)c, dx(r)e), and (dx(r)e,∞).

For each xi∈I , define constant xl = bx(r)c and equality constraint x =
xl+

∑
δp−

∑
δm. Initially M = 1 and P = 2. In general there are P positive

delta variables, and M minus delta variables. All the pieces are length 1 except
for the two ends, so all the deltas are in [0, 1] except the last ones. In theory
the P th positive delta is in [0,∞), and the Mth negative delta is between 0
and whatever value makes x = 1. In practice I bound them by smaller values,
at most 4.5.

I remove f(x) from IPOPT’s objective function. Instead I use a sum of
linear objective functions of each delta; see Figure 1. I set the derivative of
f(δ) to be the slope of the line through f(δ = 0) and f(δ = 1). For the interval
containing g, to avoid a near-zero slope I set the slope to the larger of f(0)
or f(1). Only the derivative matters, the constant offset does not, so I just
set those to zero. See also Section 4.2 for scaling and randomizing the slopes.
Because each delta contributes a positive amount to the objective, either the
positive or minus deltas will be non-zero, but not both. Further, the increasing
slope by delta index will ensure that δi<k = 1 and δi>k = 0 for some k.
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I solve the NLP, returning x(i) and the delta variable decomposition. If
any P th or Mth delta value is greater than 1, then I increase P or M and
resolve. The exact amount to increase P or M is an art; as long as I increase
it by at least one I will make progress towards a better and integer solution.
Currently I increase the number of deltas so that x(i) decomposes into delta
values that are less than one, i.e. increase by the floor of the Mth (or P th)
delta value. But I limit the number of deltas to only about double. For memory
and perhaps time efficiency, I am tempted to discard inactive deltas; but the
potential drawback is worse convergence.

Having at least one bend to either side of x(r) helps avoid unbounded
solutions. Figure 4 shows how P = 1 can lead to trouble. For two variables in
tension, their cubic objective function slopes are equal at the relaxed solution,
by definition of optimality. Their linearized slopes around the relaxed solution
will be close together, and the net slope may lead to an unbounded solution
for P = 1. Unbounded problems can arise in other situations. To handle these
the P th delta value is bounded above by the number of positive deltas plus
4.5, and the Mth delta value is analogously bounded.
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Fig. 3: Adaptive deltas. Left, I start with three deltas, δm1 ∈ [0, 5] and δp1 ∈
[0, 1] and δp2 ∈ [0,∞]. These are centered around the relaxed solution x(r) =
6.6. The best and usual case is when solving the integer optimization problem
yields x(i0) at a nearby integer value, 7. Middle and right, another case is that
x(i0) is farther away, around 8.4, with δp2 > 1. Because δp2 > 1 I adapt the
piecewise linear function with more deltas, enough to span the interval around
x(i0); here I just need one, δp3. I resolve; the new solution x(i1) = 8 is integer.

Numerical Issues

The x and delta values will rarely be truly integer, due to numerical issues and
convergence tolerances in IPOPT. As such I always round x to the nearest
integer value before checking whether the solution is integer and feasible.

4.2 Uniquifying Weights

If the constraints are structured so that increasing one variable causes just
one other variable to change, then a sufficient condition for the solution to
be naturally integer is for all the objective function weights of the deltas
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Fig. 4: Adaptive deltas, another scenario. Left, I start with two deltas, centered
around x(r) = 4.3. Solving leads to x(i0) = 6.5, with δp1 = 2.5. Right, I add
two more positive deltas and resolve. The new solution is x(i1) = 5, an integer.

(the derivatives of f) to be non-zero and unique, because in that case the
objective is optimized when each delta is at its minimum (0) or maximum
(1). This is not sufficient to guarantee integer solutions for models structured
as in Figure 2 right or for sum-even variables. Still, unique weights are a
good start. The base weight for a delta is the slope of the linearized objective
function, as described before. I sort the weights, then rescale them to be in the
same order. The scaled weights are between 1 and 1e6. The scaling includes
a random perturbation. Consecutive weights are different from each other by
at least 0.01, even if the unscaled weights were the same. The 1–1e6 scaling
helps IPOPT’s numerics.

4.3 Tilt to Encourage Integrality

If a variable is stubbornly non-integer, I increase the slope of the objective in
the interval it is stuck in. In order to maintain convexity, I increase the slope
of the objective by the same addition for all farther intervals; see Figure 1.
If x > g, then I increase the slope for all intervals greater than the current
one. The amount I increase the slope is about a factor of two more than the
current slope of the stuck interval. I increase it more if x is near to dxe. I
include a random perturbation to make degenerate weights less likely. The
case of x < g is a mirror of the x > g case.

4.4 Adding Sum-even Goals, Tilts and Bends

The sum-even constraints are curious. In principle they contribute nothing
to the objective, because I do not prefer one even value over another. They
contribute many non-convex constraints: a sum must be either 4, or 6, etc.
In that sense they have a lot of freedom, but that freedom is spread out and
difficult to explore. After the bends and tilts have succeeded for the interval
variables, the sum-even variables are added and the process repeated. I assign
a goal equal to the nearest integer value for each sum-even variable. (Recall
the variable is half the number of loop intervals.) These are then treated as
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other integer values, except that I scale their delta weights to be larger than
those of the other variables.

4.5 Wave Constraints for Enforcing Integrality

My last-resort is to add a wave-like constraints for each non-integer variable
xi; see Figure 2. Constraint ci is zero at integer values and grows as x2i nearby.

Specifically, ci(xi) = (xi − bxi + 0.5c)2 and is bounded above by 0.01. (I do
not bound it to exactly 0 for numerical and IPOPT tolerance reasons.) Note
c is continuous, but c′ is discontinuous at half integers, and c′′ = 2.

The wave works well at snapping a variable to the nearest integer value.
IPOPT has some global optimization capabilities. If the nearest wave trough is
not feasible, IPOPT can jump to another trough. Unfortunately, it may jump
over several troughs. Because of this snapping and jumping, it is better to bend
and tilt first. The approach works well when several sum-even variables are
intertwined through other constraints. The other objectives and constraints
work to distribute the change and maintain integrality.

5 Results

All tests were done on a circa 2010 Mac workstation, 3.33 GHz 6-Core Intel
Xeon CPU and 16 GB of 1333 MHz DDR3 RAM, compiled using Xcode 4.0.2.

5.1 Quality and Robustness

Figure 5a and Table 5b shows the compromises made between two sides of a
mapping face. The deviations might be more concentrated in larger domains.
E.g. one curve may have worse intervals if that allows many other curves to
have better intervals. This compromise may arise through a chain of linked
surfaces. The magnitude of the compromise is controlled by the polynomial
degree of f , cubic; the smaller the power the more concentrated the deviations.
For the complex radish of Figure 2 right, I contrived some difficult weights,
and NLIA still found an integer solution after two tilt phases affecting four
variables each.

5.2 Scaling

There are specific constraints for each meshing algorithm, for example two for
mapping and one sum-even for paving. There is one constraint for each interval
variable, to enforce the delta decomposition. The number of variables is not
known a priori, since the delta decomposition is adaptive, but is typically a
small constant (four) times the number of curves.
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two opposite curves one curve opposite two
gl gh xl = xh gl ga gb xl = xa+ xb

1 2 2 10 10 10 15 7 8
1 3 2 10 9 9 14 7 7
1 4 2 10 8 6 12 7 5
1 5 2 10 7 2 9 7 2
1 6 3 10 5 1 8 7 1
10 20 14 10 15 3 14 11 3
10 30 17 10 20 4 16 13 3
10 40 20 10 20 10 19 12 7
10 100 32 10 40 20 27 17 20
10 1000 100 10 100 50 42 27 15

Table 1: Compromises for a two-curve and three-curve mapping constraint.

xl xh 
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!
 

(d) by
curves.

Fig. 5: Test surfaces.

Scaling By Faces

I studied the scaling by the number of constraints; see Table 2. I create a
long chain of mapping faces sharing one common side; see Figure 5c. I cre-
ated a random number of curves per side (averaging 6.6), and random goals
(averaging 20) for each curve. I ran four variants, increasing the number of
faces by a factor of about

√
10 each time. At around 100,000 variables and

16,000 constraints for the integer problem the linear algebra package MA27
had memory issues. HSL has better alternatives for large problems [8].

The conclusions are that NLIA solves this problem at the rate of about
1500 constraints / second for 6.5 variables / constraint; this rate decreases
slightly with problem size, so the run-time is slightly worse than linear in the
number of faces. Setting up and solving a single bend optimization problem is
about three times as expensive as solving the relaxed problem; this is wonder-
ful run-time for solving an integer optimization problem. By contrast, recall
that an integer solution in LexIA required solving about as many subproblems
as variables, so its x(i)/x(r) ratio is in the thousands and grows super-linearly.
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faces curves x(r) s x(r) f/s x(i) s x(i) f/s x(i)/x(r) total s total f/s

160 1,061 0.028 5700 0.061 2600 2.2 0.091 1800
505 3,298 0.067 7500 0.21 2400 3.1 0.27 1900

1,600 10,614 0.23 7000 0.74 2200 3.2 0.98 1600
5,050 32,793 0.80 6300 2.3 2200 2.9 3.2 1600

Table 2: NLIA scaling by number of faces for a chain of mapping faces with no
sum-even constraints. Here “s” is time in seconds; “f” is # faces; and x(i)/x(r)

is the ratio of run-times for the integer bend problem and the relaxed problem.

curves x(r) s x(r) c/s x(i) s x(i) c/s x(i)/x(r) time total s total c/s

2,000 0.027 74k 0.084 24k 3 0.11 18k
6,324 0.051 120k 0.37 17k 7 0.43 15k
20,000 0.14 140k 1.9 11k 14 2.0 10k
63,238 0.48 130k 7.0 9k 15 7.5 8k
200,000 2.0 100k 50 4k 25 52 4k
632,378 11 57k 430 1.5k 39 444 1.4k

Table 3: NLIA scaling by number of curves for a single mapping face. Here
“s” is time in seconds; and “c” is the number of curves = variables.

Usually no bend updates were necessary. For certain random number gen-
erator seeds in large problems, some bend updates were necessary: usually
only one, and the most I ever observed was five. It appears that the total x(i)

time is slightly worse than linear in the number of bend updates needed.

Scaling By Curves

I studied the scaling by the number of curves; see Table 3. I create a single
mapping face with many curves on each side, with random goals; see Figure 5d.
I ran five variants, increasing the number of curves by a factor of

√
10 each

time. For these problems, no bend updates were necessary.
The conclusions are that NLIA solves a one-constraint problem at the

rate of about 10,000 variables / second. This rate decreases with increasing
problem size: empirically the time is about O(v1.5) for v variables. A single
bend optimization problem is about six times as expensive as the relaxed
problem. This gets worse as the problem size increases: t(i) ≈ O((t(r))1.5)
empirically. This is still excellent timing for an integer optimization problem.

For both studies, the time for other steps, such as constructing the sub-
problem or bends, was insignificant compared to the solver time.
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6 Conclusions

I have solved the Interval Assignment (IA) problem with a new optimization
function and approach (NLIA). The first contribution is defining a nonlin-
ear objective that quickly makes the major tradeoffs between intervals. The
objective function is nonlinear, but simpler and much faster to solve than
lexicographic min-max. The second contribution is to bend the nonlinear ob-
jective into a piecewise linear function. The third contribution is to tilt the
objective. The bending and tilting are performed adaptively. These quickly get
the variables to (mostly) nearby integer values, and keeps the optimization
problem convex for as long as possible. Any remaining variables stuck at non-
integer values are forced to integrality by a non-convex wave constraint. Initial
tests show that NLIA produces good quality intervals, and very quickly. The
runtime scaling is far superior to the standard approach of successive round-
ing for integer solutions. The software has an API, interfaces with MeshKit,
and is part of the MeshKit open-source code repository.

6.1 Future Work and Alternatives

In the future, I would like to fill out the breadth of the implementation.
Bending and tilting for sum-even variables needs to be implemented. I would
like to add more types of scheme constraints. Fixed-interval curves need to be
implemented. Fixed-intervals make the problem more constrained, and may
lead to infeasibility, so the algorithms may need to be modified to handle this
gracefully.

NLIA is fast but could be made more efficient when modifying and restart-
ing the optimization problems. Since the modifications are small, we could
reuse a lot of state information beyond just the prior solution. This would
involve cracking open the solver and not treating it as a black box. Bommes
et al. is also intrusive to the solver for efficiency.

The wave phase is somewhat unsatisfying to me, and IPOPT’s global
search may move far from the prior solution. Given the partial bend and
tilt solution, a variety of prior approaches could be used to finish off the prob-
lem instead [16]. A systematic exploration of nearby integer values might be
better. Branch and bound is overkill because I do not need an optimal so-
lution. Perhaps even the Ford heuristic for sum-even constraints, iteratively
increasing the largest remaining odd-interval curve by one, could be adapted.

There are some choices for those wishing to re-implement the NLIA strat-
egy in other contexts. IPOPT works well and is freely available. MA27 requires
license negotiations for commercial use. It is possible to follow the NLIA strat-
egy with only a linear optimization library: skip the relaxed phase and use
only the piecewise linear objective from the integer phases. Adapting the ob-
jective function should still get one to the same final solution, just slower,
depending on how far the optimal solution deviates from the goals.
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